Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers

نویسندگان

  • Guosheng Su
  • Ole F. Christensen
  • Tage Ostersen
  • Mark Henryon
  • Mogens S. Lund
چکیده

Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments

The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genom...

متن کامل

The Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods

Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...

متن کامل

Mapping quantitative trait loci by controlling polygenic background effects.

A new mixed-model method was developed for mapping quantitative trait loci (QTL) by incorporating multiple polygenic covariance structures. First, we used genome-wide markers to calculate six different kinship matrices. We then partitioned the total genetic variance into six variance components, one corresponding to each kinship matrix, including the additive, dominance, additive × additive, do...

متن کامل

A Genome-wide Association Study of Non-additive Effects for Milk Yield and Fertility in Holstein and Jersey Dairy Cattle

It has been suggested that traits associated with fitness, such as fertility, may have proportionately more genetic variation arising from non-additive effects than traits with higher heritability, such as milk yield. Here, we performed a large genome scan with 408,255 single nucleotide polymorphism (SNP) markers to identify chromosomal regions associated with dominance and epistatic (pairwise ...

متن کامل

Prediction of genetic contributions to complex traits using whole genome sequencing data

Although markers identified by genome-wide association studies have individually strong statistical significance, their performance in prediction remains limited. Our goal was to use animal breeding genomic prediction models to predict additive genetic contributions for systolic blood pressure (SBP) using whole genome sequencing data with different validation designs. The additive genetic contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012